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The effects of random magnetic fields are considered in an Ising spin-glass model defined in the limit of
infinite-range interactions. The probability distribution for the random magnetic fields is a double Gaussian,
which consists of two Gaussian distributions centered, respectively, at +H0 and −H0, presenting the same width
�. It is argued that such a distribution is more appropriate for a theoretical description of real systems than its
simpler particular two well-known limits, namely, the single Gaussian distribution ���H0� and the bimodal
one ��=0�. The model is investigated by means of the replica method, and phase diagrams are obtained within
the replica-symmetric solution. Critical frontiers exhibiting tricritical points occur for different values of �,
with the possibility of two tricritical points along the same critical frontier. To our knowledge, it is the first time
that such a behavior is verified for a spin-glass model in the presence of a continuous-distribution random field,
which represents a typical situation of a real system. The stability of the replica-symmetric solution is ana-
lyzed, and the usual Almeida-Thouless instability is verified for low temperatures. It is verified that the
higher-temperature tricritical point always appears in the region of stability of the replica-symmetric solution;
a condition involving the parameters H0 and �, for the occurrence of this tricritical point only, is obtained
analytically. Some of our results are discussed in view of experimental measurements available in the literature.
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I. INTRODUCTION

Spin-glass systems �1–5� continue to challenge many re-
searchers in the area of magnetism. From the theoretical
point of view, its simplest version defined in terms of Ising
spin variables, the so-called Ising spin glass �ISG�, represents
one of the most fascinating problems in the physics of dis-
ordered magnets. The ISG mean-field solution, based on the
infinite-range-interaction model, as proposed by Sherrington
and Kirkpatrick �SK� �6�, presents a quite nontrivial behav-
ior. The correct low-temperature solution of the SK model is
defined in terms of a continuous order-parameter function �7�
�i.e., an infinite number of order parameters� associated with
many low-energy states, a procedure which is usually de-
nominated as replica-symmetry breaking �RSB�. Further-
more, a transition in the presence of an external magnetic
field, known as the Almeida-Thouless �AT� line �8�, is found
in the solution of the SK model: such a line separates a
low-temperature region, characterized by RSB, from a high-
temperature one, where a simple one-parameter solution, de-
nominated as replica-symmetric �RS� solution, is stable. The
validity of the results of the SK model for the description of
more realistic systems, characterized by short-range interac-
tions, represents a very polemic question �5�. Recent numeri-
cal simulations claim the absence of an AT line in the three-
dimensional short-range ISG �9�, as well as along the non-
mean-field region of a one-dimensional ISG characterized by
long-range interactions �10�. However, these results, ob-
tained with rather small lattice-size simulations, do not rule
out the possibility of a crossover to a different scenario at
much larger lattice sizes, or also for smaller fields �and/or

temperatures�. One candidate for alternative theory to the SK
model is the droplet model �11�, based on domain-wall
renormalization-group arguments for spin glasses �12,13�.
According to the droplet model, the low-temperature phase
of any finite-dimensional short-range spin glass should be
described in terms of a single thermodynamic state �together,
of course, with its corresponding time-reversed counterpart�,
i.e., essentially a RS-type solution. Many important features
of the ISG still deserve an appropriate understanding within
the droplet-model scenario, and in particular, the validity of
this model becomes questionable for increasing dimension-
alities, where one expects the existence of a finite upper criti-
cal dimension, above which the mean-field picture should
prevail.

Some diluted antiferromagnets, such as FexZn1−xF2,
FexMg1−xCl2, and MnxZn1−xF2, have been the object of ex-
tensive experimental research, due to their intriguing proper-
ties �14�. These systems are able to exhibit, within certain
concentration ranges, random field, spin glass, or both be-
haviors and, in particular, the compounds FexZn1−xF2 and
FexMg1−xCl2 are characterized by large crystal-field anisotro-
pies, in such a way that they may be reasonably well-
described in terms of Ising variables. Therefore, they are
usually considered as good physical realizations of the
random-field Ising model �RFIM�, or also of an ISG. For the
FexZn1−xF2, one gets a RFIM-like behavior for x�0.42, an
ISG for x�0.25, whereas for intermediate concentrations
�0.25�x�0.42� one may observe both behaviors depending
on the magnitude of the applied external magnetic field
�RFIM �ISG� for small �large� magnetic fields�, with a cross-
over between them �15–17�. In what concerns FexMg1−xCl2,
one gets an ISG-like behavior for x�0.55, whereas for
0.7�x�1.0 one has a typical RFIM with a first-order tran-
sition turning into a continuous one due to a change in the
random fields �14,18,19�. Even though a lot of experimental
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data is available for these systems, they still deserve an ap-
propriate understanding, with only a few theoretical models
proposed for that purpose �20–27�. Within the numerical-
simulation technique, one has tried to take into account the
basic microscopic ingredients of such systems �20–23�,
whereas at the mean-field level, a joint study of both ISG and
RFIM models has been shown to be a very promising ap-
proach �24–27�.

In the present work we investigate the effects of random
magnetic fields, following a continuous probability distribu-
tion, in an ISG model. The model is considered in the limit
of infinite-range interactions, and the probability distribution
for the random magnetic fields is a double Gaussian, which
consists of a sum of two independent Gaussian distributions.
Such a distribution interpolates between the bimodal and the
simple Gaussian distributions, which are known to present
distinct low-temperature critical behavior, within the mean-
field limit �24–27�. It is argued that this distribution is more
appropriate for a theoretical description of diluted antiferro-
magnets than the bimodal and Gaussian distributions. In par-
ticular, for given ranges of parameters, this distribution pre-
sents two peaks, and satisfies the requirement of effective
random fields varying in both sign and magnitude, which
comes out naturally in the identification of the RFIM with
diluted antiferromagnets in the presence of a uniform field
�28,29�; this condition is not fulfilled by simple discrete
probability distributions, e.g., the bimodal one, which is cer-
tainly very convenient from a theoretical point of view. Re-
cently, the use a double-Gaussian distribution in the RFIM
�30� yielded interesting results, leading to a candidate model
to describe the change of a first-order transition into a con-
tinuous one that occurs in FexMg1−xCl2 �14,18,19�. The use
of this distribution in the study of the present model should
be relevant for FexMg1−xCl2 with concentrations x�0.55,
where the ISG behavior shows up. In the next section we
study the SK model in the presence of the above mentioned
random magnetic fields; a rich critical behavior is presented,
and in particular, one finds a critical frontier that may present
one, or even two, tricritical points. The instabilities of the RS
solution are also investigated, and AT lines presenting an
inflection point, in concordance with those measured in some
diluted antiferromagnets, are obtained. Finally, in Sec. III we
present our conclusions.

II. THE ISING SPIN GLASS IN THE PRESENCE
OF A RANDOM-FIELD

The infinite-range-interaction Ising spin-glass model, in
the presence of an external random magnetic field, may be
defined in terms of the Hamiltonian

H = − �
�i,j�

JijSiSj − �
i

HiSi, �1�

where the sum ��i,j� applies to all distinct pairs of spins
Si= �1 �i=1,2 , . . . ,N�. The interactions �Jij� and the fields
�Hi� follow independent probability distributions

P�Jij� = 	 N

2�J2
1/2
exp�−

N

2J2	Jij −
J0

N

2� , �2�

P�Hi� =
1

2
	 1

2��2
1/2exp�−
�Hi − H0�2

2�2 �
+ exp�−

�Hi + H0�2

2�2 �� . �3�

The probability distribution for the fields �Hi� is a double
Gaussian and depends on two parameters, H0 and �, modi-
fying its form according to the ratio H0 /�, as exhibited in
Fig. 1. Such a distribution is double-peaked for �H0 /���1,
presents a single peak for �H0 /���1, changing its concavity
at the origin when �H0 /��=1. In addition to that, in the limit
�→0, one recovers a bimodal probability distribution. It is
important to notice that its kurtosis 	= �Hi

4�H / �3��Hi
2�H�2�

�where �¯�H denotes an average over P�Hi��, varies from
	=1 /3 �bimodal limit� to 	=1 �Gaussian limit�, approaching
unit only in the limit �H0 /��→0, in which case one
gets a perfect Gaussian distribution. For finite values of
H0 /� one gets 1 /3�	�1, and in particular, for the cases
exhibited in Fig. 1 one has that 	�0.99��H0 /��=1 /3�,
	�0.83��H0 /��=1�, 	�0.50��H0 /��=5 /2�, and 	
�0.35��H0 /��=10�.

The free energy of a given disorder realization F��Jij ,Hi��
depends on two random variables, in such a way that the
average over the disorder �¯�J,H may be written in terms of
independent integrals

�F��Jij,Hi���J,H =� �
�i,j�

�dJijP�Jij���
i

�dHiP�Hi��F��Jij,Hi�� .

�4�

Now, one can make use of the replica method �1–4� in order
to obtain the free energy per spin
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FIG. 1. The probability distribution of Eq. �3� �the random fields
are scaled in units of �� for typical values of the ratio H0 /�: �a�
�H0 /��=1 /3,1 ,5 /2, �b� �H0 /��=10.
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− 
f = lim
N→�

1

N
�ln Z��Jij,Hi���J,H = lim

N→�
lim
n→0

1

Nn
��Zn�J,H − 1� ,

�5�

where Zn represents the partition function of the replicated
system and 
=1 / �kT�. Standart calculations lead to


f = −
�
J�2

4
−

�
��2

2
+ lim

n→0

1

n
min g�m�,q�
� , �6�

where

g�m�,q�
� =

J0

2 �
�

�m��2 +
�
J�2

2 �
��
�

�q�
�2

−
1

2
ln Tr� exp�Heff

+ � −
1

2
ln Tr� exp�Heff

− � ,

�7�

Heff
� = 
J0�

�

m�S� + �
��2 �
��
�

S�S


+ �
J�2 �
��
�

q�
S�S
 � 
H0�
�

S�. �8�

In the equations above, the index � ��=1,2 , . . . ,n� is a rep-
lica label, Tr� represents a trace over the spin variables of
each replica, and ���
� denote sums over distinct pairs of
replicas.

The extrema of the functional g�m� ,q�
� give us the equi-
librium equations

m� =
1

2
�S��+ +

1

2
�S��−, �9�

q�
 =
1

2
�S�
�+ +

1

2
�S�
�− �� � 
� , �10�

where �¯�� indicate thermal averages with respect to the
“effective Hamiltonians” Heff

� in Eq. �8�. Assuming the RS
ansatz �1–4�, i.e., m�=m �∀�� and q�
=q �∀��
��, Eqs.
�6�–�10� yield


f = −
�
J�2

4
�1 − q�2 +


J0

2
m2

−
1

2

1
�2�

�
�

�

dze−z2/2 ln�2 cosh +�

−
1

2

1
�2�

�
�

�

dze−z2/2 ln�2 cosh −� , �11�

m =
1

2

1
�2�

�
−�

+�

dze−z2/2 tanh + +
1

2

1
�2�

�
−�

+�

dze−z2/2 tanh −,

�12�

q =
1

2

1
�2�

�
−�

+�

dze−z2/2 tanh2 +

+
1

2

1
�2�

�
−�

+�

dze−z2/2 tanh2 −, �13�

where

� = 
�J0m + JGz � H0� , �14�

G = �q + 	�

J

2�1/2

. �15�

Although the spin-glass order parameter �Eq. �13�� is al-
ways induced by the random field, it may still contribute to a
nontrivial behavior. The RS solution is known to lead to an
instability at low temperatures, usually associated to this pa-
rameter, occurring below the AT �8� line,

	 kT

J

2

=
1

2

1
�2�

�
−�

+�

dze−z2/2 sech4 +

+
1

2

1
�2�

�
−�

+�

dze−z2/2 sech4 −. �16�

Let us now present the phase diagrams of this model. Since
the random field induces the parameter q, there is no spon-
taneous spin-glass order, like the one found in the SK model.
However, there is a phase transition related to the magneti-
zation m, in such a way that two phases are possible within
the RS solution, namely, the ferromagnetic �m�0, q�0�
and the independent �m=0, q�0� ones. The critical frontier
separating these two phases is obtained by solving the equi-
librium conditions �12� and �13�, whereas in the case of first-
order phase transitions, the free energy per spin �11� will be
analyzed. Expanding the magnetization �Eq. �12�� in power
series

m = A1�q�m + A3�q�m3 + A5�q�m5 + O�m7� , �17�

where

A1�q� = 
J0�1 − �1�q�� , �18�

A3�q� = −
�
J0�3

3
�1 − 4�1�q� + 3�2�q�� , �19�

A5�q� =
�
J0�5

15
�2 − 17�1�q� + 30�2�q� − 15�3�q�� , �20�

and

�k�q� =
1

�2�
�

−�

+�

dze−z2/2 tanh2k 
JGz +
H0

J
� . �21�

The coefficients in Eqs. �18�–�20� depend on q, which in its
turn depends on m through Eq. �13�. In order to eliminate
this dependence, we expand Eq. �13� in powers of m
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q = q0 + �
J0�2 �

1 − �
J�2�
m2 + O�m4� , �22�

with

� = 1 − 4�1�q0� + 3�2�q0� , �23�

where q0 corresponds to the solution of Eq. �13� for m=0.
Substituting Eq. �22� in the expansion of Eq. �17�, one ob-
tains the m-independent coefficients in the power expansion
of the magnetization; in terms of the lowest-order coeffi-
cients, one gets

m = A1�m + A3�m
3 + O�m5� , �24�

A1� = A1�q0� , �25�

A3� = −
�
J0�3

3
�1 + 2�
J�2�

1 − �
J�2�
�� . �26�

The associated critical frontier is determined through the
standard procedure, taking into account the spin-glass order
parameter �Eq. �13��, as well. For continuous transitions,
A1�=1, with A3��0, in such a way that one has to solve nu-
merically the equation A1�=1, together with Eq. �13� consid-
ering m=0. If A3��0, one may have first-order phase transi-
tions, characterized by a discontinuity in the magnetization;
in this case, the critical frontier is found through a Maxwell
construction, i.e., by equating the free energies of the two
phases, which should be solved numerically together with
Eqs. �12� and �13� for each side of the critical line. When
both types of phase transitions are present, the continuous
and first-order critical frontiers meet at a tricritical point that
defines the limit of validity of the series expansion. The lo-
cation of such a point is determined by solving numerically
equations A1�=1, A3�=0, and Eq. �13� with m=0 �provided
that the coefficient of the next-order term in the expansion of
Eq. �24� is negative, i.e., A5��0�.

Considering the above-mentioned phases, the AT instabil-
ity of Eq. �16� splits each of them in two phases, in such a
way that the phase diagram of this model may present four
phases, that are usually classified as �24–26� �i� paramag-
netic �P� �m=0, stability of the RS solution�; �ii� spin glass
�SG� �m=0, instability of the RS solution�; �iii� ferromag-
netic �F� �m�0, stability of the RS solutiont�; �iv� mixed
ferromagnetic �F�� �m�0, instability of the RS solution�.
Even though in most cases the AT line is computed numeri-
cally, for large values of J0 �i.e., J0�J and J0�H0� and low
temperatures, one gets the following analytic asymptotic be-
havior:

kT

J
�

2

3

1
�2�

1

G
exp�−

�J0 + H0�2

2J2G2 � + exp�−
�J0 − H0�2

2J2G2 �� .

�27�

For the particular case �=0, i.e., the bimodal probability
distribution for the fields �25�, it was verified that the phase
diagrams of the model change qualitatively and quantita-
tively for incresing values of H0. Herein, we show that the
phase diagrams of the present model change according to the
parameters of the distribution of random fields �Eq. �3��,

which may drastically modify the critical line separating the
regions with m=0 and m�0, defined by the coefficients in
Eq. �24�. In particular, one finds numerically a threshold
value H0

�1����, for which this line presents a single point
characterized by A1�=1 and A3�=0; all other points of this line
represent continuous phase transitions, characterized by
A1�=1 and A3��0. Typical examples of this case are exhibited
in Fig. 2, for the dimensionless ratios �� /J�=0.2 and
�� /J�=0.6. As will be seen in the next figures, for values of
H0 /J slightly larger than H0

�1���� /J, this special point splits
in two tricritical points, whereas for values of H0 /J smaller
than H0

�1���� /J, this critical frontier is completely continuous.
Therefore, one may interpret the point for which H0
=H0

�1���� as a collapse of two tricritical points. Such an un-
usual critical point is a characteristic of some infinite-range-
interaction spin glasses in the presence of random magnetic
fields �25,26�, and to our knowledge, it has never been found
in other magnetic models. From Fig. 2, one notices that the
threshold value H0

�1���� /J increases for increasing values of
� /J, although the corresponding ratio H0

�1���� /� decreases.
Apart from that, this peculiar critical point always occurs
very close to the onset of RSB; indeed, for �� /J�=0.6, this
point essentially coincides with the union of the two AT lines
�AT1 and AT2�. At least for the range of ratios � /J investi-
gated, this point never appeared below the AT lines, i.e., in
the region of RSB. Therefore, an analysis that takes into
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FIG. 2. Phase diagrams of the infinite-range-interaction ISG in
the presence of a double-Gaussian random field; the phases are
labeled according to the definitions in the text. AT1 and AT2 denote
AT lines, and all variables are scaled in units of J. Two typical
examples ��a� �� /J�=0.2, �b� �� /J�=0.6� are exhibited, for which
there are single points �represented by black dots� characterized by
A1�=1 and A3�=0, defining the corresponding threshold values
H0

�1����.
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account RSB, will not modify the location of this point in
these cases.

In Fig. 3 we exhibit phase diagrams for a fixed value of �
��=0.2J�, and increasing values of H0. In Fig. 3�a� we show
the case �H0 /J�=0.5, where one sees a phase diagram that
looks like, at least qualitatively, the one of the SK model;
even though the random-field distribution �see Eq. �3�� is
double peaked �notice that �H0 /��=2.5 in this case�, the ef-
fects of such a field are not sufficient for a qualitative change
in the phase diagram of the model. As we have shown above
�see Fig. 2�a��, qualitative changes only occur in the corre-
sponding phase diagram for a ratio �H0

�1���� /���5, or
higher. It is important to remark that a tricritical point occurs
in the corresponding RFIM for any �H0 /���1 �30�, in
agreement with former general analyses �31–33�. If one as-
sociates the tricritical points that occur in the present model
as reminiscents of the one in the RFIM, one notices that such
effects appear attenuated in the present model due to the
bond randomness, as predicted previously for short-range-
interaction models �34,35�. In Fig. 3�b� we present the phase
diagram for �H0 /J�=0.993; in this case, one observes two
finite-temperature tricritical points along the critical frontier
that separates the regions with m=0 and m�0. The higher-
temperature point is located in the region where the RS ap-
proximation is stable, and so, it will not be affected by RSB
effects; however, the lower-temperature tricritical point,
found in the region of instability of the RS solution, may
change under a RSB procedure. In Fig. 3�c� we exhibit an-
other interesting situation of the phase diagram of this
model, for which the lower-temperature tricritical point goes
down to zero temperature, defining a second threshold value,
H0

�2����. This threshold value was calculated analytically,
through a zero-temperature approach that follows below, for
arbitrary values of � /J. Above such a threshold, only the
higher-temperature tricritical point �located in the region of
stability of the RS solution� exists; this is shown in Fig. 3�d�,
where one considers a typical situation with H0�H0

�2����. It
is important to notice that in Fig. 3�d� the two AT lines
clearly do not meet at the critical frontier that separates the
regions with m=0 and m�0; such an effect is a consequence
of the phase coexistence region, characteristic of first-order
phase transitions, and has already been observed in the SK
model with a bimodal random-field distribution �25�. The
line AT1 is valid up to the right end limit of the phase coex-
istence region, whereas AT2 remains valid up to the left end
limit of such a region; as a consequence of this, the lines AT1
and AT2 do not meet at the corresponding Independent-
Ferromagnetic critical frontier.

Additional phase diagrams are shown in Fig. 4, where we
exhibit two typical cases for the random-field width �� /J�
=0.6. In Fig. 4�a� we show the equivalent of Fig. 3�b�, where
two tricritical points appear at finite temperatures; now one
gets qualitatively a similar effect, but with a random-field
distribution characterized by a smaller ratio H0 /�. From the
quantitative point of view, the following changes occur, in
the critical frontier independent-ferromagnetic, due to an in-
crease in � /J: �i� such a critical frontier moves to higher
values of J0 /J, leading to an enlargement of the independent
phase �corresponding to the region occupied by the P and SG
phases of Fig. 4�a��; �ii� the two tricritical points are shifted
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FIG. 3. Phase diagrams of the infinite-range-interaction ISG in
the presence of a double-Gaussian random field with �� /J�=0.2 and
typical values of H0 /J; the phases are labeled according to the
definitions in the text. AT1 and AT2 denote AT lines, and all vari-
ables are scaled in units of J. By increasing the value of H0 /J, the
phase diagram changes both qualitatively and quantitatively and,
particularly, the critical lines separating the regions with m=0 and
m�0 are modified; along these critical frontiers, the full �dotted�
lines represent continuous �first-order� phase transitions and the
black dots denote tricritical points; for the values of H0 /J chosen,
one has �a� continuous phase transitions, �b� two tricritical points at
finite temperatures, �c� the lower tricritical point at zero tempera-
ture, defining the corresponding threshold value H0

�2����, and �d� a
single tricritical point at finite temperatures.
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to lower temperatures. In Fig. 4�b� we present the situation
of a zero-temperature tricritical point, defining the corre-
sponding threshold value H0

�2����; once again, one gets a
physical situation similar to the one exhibited in Fig. 3�c�,
but with a much smaller ratio H0 /�. Qualitatively similar
effects may be also observed for other values of �, but with
different threshold values H0

�1���� and H0
�2����. We have no-

ticed that such threshold values increase with � /J, even
though one requires less-pronounced double-peaked distribu-
tions �i.e., smaller values for the ratios H0 /�� in such a way
to get significant changes in the standard SK model phase
diagrams �as can be seen in Figs. 3�c� and 4�b��.

The evolution of the threshold values H0
�1���� and H0

�2����
with the dimensionless width � /J is exhibited in Fig. 5. One
notices three distinct regions in what concerns the existence
of tricritical points and first-order phase transitions along the
independent-ferromagnetic critical frontier. Throughout re-
gion I �defined for H0�H0

�2����� a first-order phase transition
occurs at finite temperatures and reaches the zero-
temperature axis; a single tricritical point is found at finite
temperatures �a typical example is shown in Fig. 3�d��. In
region II �defined for H0

�1�����H0�H0
�2����� one finds two

finite-temperature tricritical points, with a first-order line be-
tween them �typical examples are exhibited in Figs. 3�b� and

4�a��. Along region III �H0�H0
�1����� one has a completely

continuous independent-ferromagnetic critical frontier �as in
Fig. 3�a��. The dashed straight line corresponds to H0=�,
which represents the threshold for the existence of a tricriti-
cal point in the corresponding RFIM �30�. Hence, if one
associates the occurrence of tricritical points in the present
model with those of the RFIM, one notices that such effects
are attenuated due to the bond randomness, in agreement
with Refs. �34,35�; herein, the bond randomness introduces a
spin-glass order parameter, in such a way that one needs
stronger values of H0 /J for these tricritical points to occur.

Let us now consider the phase diagram of the model at
zero temperature; in this case, the spin-glass order parameter
is trivial �q=1�, in such a way that the free energy and mag-
netization become

f = −
J0

2
m2 −

H0

2 �erf	 J0m + H0

JG0
�2


 − erf	 J0m − H0

JG0
�2


�
−

J
�2�

G0exp�−
�J0m + H0�2

2J2G0
2 �

+ exp�−
�J0m − H0�2

2J2G0
2 �� , �28�

m =
1

2
erf	 J0m + H0

JG0
�2


 +
1

2
erf	 J0m − H0

JG0
�2


 , �29�

where

G0 = �1 + 	�

J

2�1/2

. �30�

Using a procedure similar to the one applied for finite tem-
peratures, one may expand Eq. �29� in powers of m,

m = a1m + a3m3 + a5m5 + O�m7� , �31�

where

a1 =� 2

�

1

G0
	 J0

J

exp	−

H0
2

2J2G0
2
 , �32�
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FIG. 4. Phase diagrams of the infinite-range-interaction ISG in
the presence of a double-Gaussian random field with �� /J�=0.6 and
typical values of H0 /J; the phases are labeled according to the
definitions in the text. AT1 and AT2 denote AT lines, and all vari-
ables are scaled in units of J. Along the critical lines separating the
regions with m=0 and m�0, the full �dotted� lines represent con-
tinuous �first-order� phase transitions and the black dots denote tri-
critical points; for the values of H0 /J chosen, one has �a� two
tricritical points at finite temperatures, �b� the lower tricritical point
at zero temperature, defining the corresponding threshold value
H0

�2����.
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1.4

1.6

H
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FIG. 5. Evolution of the threshold values H0
�1���� �lower curve�

and H0
�2���� �upper curve� with the width � �all variables are scaled

in units of J�. Three distinct regions �I, II, and III� are shown,
concerning the existence of tricritical points and first-order phase
transitions along the independent-ferromagnetic critical frontier.
The dashed straight line corresponds to H0=�, above which one has
a tricritical point in the corresponding RFIM �30�.
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a3 =
1

6
� 2

�

1

G0
3	 J0

J

3 1

G0
2	H0

J

2

− 1�exp	−
H0

2

2J2G0
2
 ,

�33�

a5 =
1

120
� 2

�

1

G0
5	 J0

J

5 1

G0
4	H0

J

4

−
6

G0
2	H0

J

2

+ 3�
�exp	−

H0
2

2J2G0
2
 . �34�

For �H0 / �JG0��2�1 �i.e., a3�0�, we have a continuous criti-
cal frontier given by a1=1,

J0

J
=��

2
G0 exp� H0

2

2J2G0
2� . �35�

This continuous critical frontier ends at a tricritical point
�a3=0�,

1

G0
2	H0

J

2

= 1 ⇒
H0

J
�

H0
�2�

J
= �1 + 	�

J

2�1/2

, �36�

which may be substituted in Eq. �35� to give

J0

J
=��e

2
�1 + 	�

J

2�1/2

. �37�

Hence, Eqs. �36� and �37� yield the coordinates of the tric-
ritical point at zero temperature. In addition to that, the result
of Eq. �36� corresponds to the exact threshold value H0

�2����
�as exhibited in Fig. 5�. The above results are represented in
the zero-temperature phase diagram shown in Fig. 6, where
one finds a single critical frontier separating the phases SG
and F�.

In order to illustrate that the present model is capable of
reproducing qualitatively the phase diagrams of previous
works, namely, the Ising spin glass in the presence of random
fields following either a Gaussian �24� or a bimodal �25�

probability distribution, in Fig. 7 we compare typical results
obtained for the Ising spin-glass model in the presence of a
double Gaussian distribution characterized by �� /J�=0.4
with those already known for such particular cases. In these
comparisons, we have chosen qualitatively similar phase dia-
grams, mainly taking into account the critical frontier that
separates the regions with m=0 and m�0. In Fig. 7�a� we
exhibit the phase diagram of the present model
��H0 /J�=0.8� together with the one of an ISG in the presence
of random fields described by a single Gaussian distribution;
both phase diagrams are qualitatively similar to the one of
the standard SK model. In Fig. 7�b� we present phase dia-
grams for the bimodal and double Gaussian distributions, at
their corresponding threshold values H0

�1����. Typical situa-
tions for the cases of the bimodal and double Gaussian dis-
tributions, where two tricritical points appear along the criti-
cal frontier that separates the regions with m=0 and m�0,
are shown in Fig. 7�c�. Phase diagrams for the bimodal and
double Gaussian distributions, at their corresponding thresh-
old values H0

�2���� are presented in Fig. 7�d�.
Next, we analyze the AT instability for J0=0; in this case,

Eq. �16� may be written as

	 kT

J

2

=
1

�2�
�

−�

+�

dze−z2/2 sech4 
JGz +
H0

J
� , �38�

which corresponds to the same instability found in the case
of a single-Gaussian random field �24�. In Fig. 8 we exhibit
AT lines for two typical values of distribution widths; in each
case the AT line separates a region of RS from the one char-
acterized by RSB. One notices that the region associated
with RSB gets reduced for increasing values of �; however,
the most interesting aspect in these lines corresponds to an
inflection point, which may be identified with the one that
has been observed in the experimental equilibrium boundary
of the compound FexZn1−xF2 �15,24�. Up to now, this effect
was believed to be explained only through the ISG in the
presence of a single-Gaussian random field, for which the
phase diagrams in the cases J0�0 are much simpler, with all
phase transitions being continuous, typically similar to those
of the SK model. Herein, we have shown that an inflection
point in the AT line may also occur in the present model, for
which one has a wide variety of phase diagrams in the cor-
responding case J0�0, as exhibited above. Therefore, the
present model would be appropriate for explaining a similar
effect that may be also observed experimentally in diluted
antiferromagnets characterized by first-order phase transi-
tions, such as FexMg1−xCl2.

III. CONCLUSIONS

We have studied an Ising spin-glass model, in the limit of
infinite-range interactions and in the presence of random
magnetic fields distributed according to a double-Gaussian
probability distribution. Such a distribution contains, as par-
ticular limits, both the single-Gaussian and bimodal prob-
ability distributions. By varying the parameters of this distri-
bution, a rich variety of phase diagrams is obtained, with
continuous and first-order phase transitions, as well as tric-
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1.5

H
0/J
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FIG. 6. The zero-temperature phase diagram H0 versus J0 �in
units of J� for two typical values of the dimensionless width � /J.
The critical frontiers separating the phases SG and F� is continuous
for small values of H0 /J �full lines� and become first-order for
higher values of H0 /J �dotted lines�; the black dots denote tricritical
points. Although the two critical frontiers become very close near
the tricritical points, they do not cross each other; the tricritical
point located at a higher value of J0 /J corresponds to the higher
dimensionless width � /J.
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ritical points. The condition for the existence of a single
finite-temperature tricritical point at the critical frontier
paramagnetic-ferromagnetic �i.e., in the region of stability of
the replica-symmetric solution�, characterized by a first-order
line at low temperatures, is derived analytically. In addition
to that, we found an inflection point in the AT line �in the
plane magnetic field versus temperature�, which may corre-
spond to the one observed in the compound FexZn1−xF2
�15,24�. This effect, which has already shown up in the Ising
spin-glass model in the presence of a Gaussian random field
�24�, is herein obtained for a more general probability distri-
bution for the magnetic fields. Hence, the present model is
appropriate for explaining a similar effect that could be ob-
served also in diluted antiferromagnets characterized by first-
order phase transitions such as FexMg1−xCl2. Therefore, with
this random-field distribution, one may adjust the model to
given physical situations, in order to reproduce a wide diver-
sity of effects that occur in real systems.

The double-Gaussian probability distribution, defined
above, is suitable for a theoretical description of random-
field systems, being a better candidate for such a purpose
than the two most commonly used distributions in the litera-
ture, namely, the bimodal and single-Gaussian distributions,
due to the following reasons. �i� In the identifications of the
RFIM with diluted antiferromagnets in the presence of a uni-
form magnetic field, the local random fields are expressed in
terms of quantities that vary in both sign and magnitude
�28,29�. This characteristic rules out the bimodal probability
distribution from such a class of physical systems. The
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FIG. 7. Typical phase diagrams of the infinite-range interaction
ISG in the presence of a double-Gaussian random field with
�� /J�=0.4 are compared with those already known for some par-
ticular cases. Comparisons of qualitatively similar phase diagrams
are presented concerning the critical frontier that separates the re-
gions with m=0 and m�0. �a� Phase diagrams for the single
Gaussian ��H0 /J�=0.0 and �� /J�=0.4� and the double Gaussian
��H0 /J�=0.8 and �� /J�=0.4� distributions for the random fields. �b�
Phase diagrams for the bimodal ��H0 /J�=0.9573� and the double
Gaussian ��H0 /J�=1.0447� distributions for the random fields. �c�
Phase diagrams for the bimodal ��H0 /J�=0.97� and the double
Gaussian ��H0 /J�=1.055� distributions for the random fields. �d�
Phase diagrams for the bimodal ��H0 /J�=1.0� and the double
Gaussian ��H0 /J�=1.077� distributions for the random fields. The
phases are labeled according to the definitions in the text. AT1 and
AT2 denote AT lines, and all variables are scaled in units of J.
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FIG. 8. Instabilities of the replica-symmetric solution of the
infinite-range-interaction ISG �cases J0=0� in the presence of a
double-Gaussian random field, for two typical values of distribution
widths �a� �� /J�=0.2, �b� �� /J�=0.6. In each case the AT line sepa-
rates a region of RS from the one characterized by RSB �all vari-
ables are scaled in units of J�.
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double-Gaussian probability distribution is appropriate for a
description of diluted antiferromagnets for a large range of
magnetic concentrations, as in the RFIM, as well as in the
ISG regimes. �ii� Although the RFIM defined in terms of a
single-Gaussian probability distribution for the fields is
physically acceptable, it usually leads to a continuous phase
transition at finite temperatures, either within mean-field
�31–33�, or standard short-range-interaction approaches
�36,37�. Such a system is not able to exhibit first-order phase
transitions and tricritical points, that may occur in some di-
luted antiferromagnets �14�. A similar behavior was obtained
for an ISG in the presence of random magnetic fields follow-
ing a single-Gaussian probability distribution, where all

phase transitions were found to be continuous �24�. The
present model, defined in terms of a double-Gaussian prob-
ability distribution, is expected to be relevant for
FexMg1−xCl2 �which is known to exhibit a first-order phase
transition in the RFIM regime �14�� with concentrations
x�0.55, where the ISG behavior shows up.
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